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Abstract. A systematic renormalisation group technique for studying the 2D sine-Gordon 
theory (Coulomb gas, X Y  model) near its phase transition is presented. The new results are 
(a) higher order terms in the flow equations, beyond those of Kosterlitz, give rise to a new 
universal quantity; (b) this in turn gives the universal form as well as the relative coefficient 
of the next-to-leading term in the correlation function of the X Y  model; (c) the free energy 
(1PI vacuum sum) is calculated after the singularity at p2  = 4a is treated; (d) vortices with 
multiple charges are shown to be irrelevant; (e) symmetry breaking fields are analysed 
systematically. 

The main ideas are that the sine-Gordon theory can be defined as a double expansion in 
a(fugacity) and S = p2/8a - 1 (distance from the critical temperature at LY = 0). Wave- 
function and coupling constant (a) renormalisations are necessary and sufficient, around 
p2 = 8 a  where cos q5 acquires dimension 2, for functions with elementary SG fields. This 
gives rise to renormalisation of p. The renormalisability is proved to the order we calculate 
in the context of the SG theory, and in general, by using the equivalence to the Thirring- 
Schwinger model. The renormalised p z  plays a role analogous to the dimension in a 44  
theory-8a being the critical dimension. p2  > 8a gives an infrared asymptotically free 
theory which leads to the well-known fixed line. The infrared properties are understood by 
analogy with the non-linear (+ model. 

1. Introduction 

The Gaussian spirtwave approximation (Rice 1966, Kane and Kadanoff 1967, Wegner 
1967, Berezinskii 1970, Zittartz 1976) gives the following description of the two- 
dimensional (2D) XY model (and systems, such as 2D He4 films, believed to have the 
same critical behaviour): as required by the Mermin-Wagner (1966) theorem there is 
no long-range order (see also Coleman 1973) at all temperatures; the correlation. 
length, 5, is infinite and the spin correlation functions decay as power laws whose 
exponents vary continuously with temperature. For example, the function (&(r)S,.(O)) 
describing the correlations of one (say the x)  component of the planar spins S(r )  
situated at lattice sites r behaves like r-l’zTK for large r, where the Hamiltonian 
J Z(F,F, )  S ( r )  . S(r ‘ )  includes only nearest-neighbour interactions and K = J/kBT. This 
picture is exact in the limit T + 0, qualitatively correct for kBT<c J ,  and clearly wrong 
for k , T z J  where one expects a finite 5 and the associated exponential decay of 
correlations. 

t Work supported in part by a grant from The Israel Commission for Basic Research. 
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Kosterlitz and Thouless (1973) first pointed out that inclusion of vortex excitations 
is essential because of their long-range interactions, and it corrects this defect in a 
simple way. The vortices carry integer vorticity and interact among themselves via the 
logarithmic 2D Coulomb interaction (see e.g. Onsager 1949). They can therefore be 
regarded as constituting a 2D Coulomb gas-a system of positive and negative integer 
charges interacting in two dimensions. At  low temperatures (Kosterlitz and Thouless 
1973, Kosterlitz 1974) the vortices are bound in pairs of zero vorticity and so affect the 
spin-wave description quantitatively but not qualitatively: the spin-wave exponent 
(27rK)-’ is replaced by (27rKeff)-’, where KeB is a complicated (in general, incalculable) 
function of T which approaches K as T + 0. At higher temperatures the binding of the 
vortices decreases until at 277Keff = 4 a phase transition into a state composed of 
unbound vortices occurs. In this high-temperature phase 6 is finite and ccrrelations 
decay exponentially. In the language of the 2D Coulomb gas this phase is composed of 
charged particles and is thus metallic; the screening length of the charges is simply given 
by 6 (Chui and Lee 1975). At 27rKeff = 4 the system undergoes a metal-insulator 
transition into an insulating phase composed of neutral molecules-bound pairs of 
charges-which provide no electrostatic screening; hence 6 = a?. 

Subsequent to their pioneering work, much effort has been devoted to imbedding 
Kosterlitz and Thouless’ (1973) analysis in a more systematic framework. Most 
treatments start with the ‘spin-wave plus Coulomb gas’ (SWCG) approximation, some- 
times referred to as the Villain model (Villain 1975). This model is specified by two 
parameters, the temperature T and a chemical potential k for the Coulomb charges, 
both of which are determined by the X Y  coupling K. It has, however, proven useful to 
consider the SWCG in its own right, i.e. to regard T and as independent parameters. 
By imposing the appropriate relationship (p  = p( T ) )  between k and T one recovers an 
approximation to the X Y  model. This ’generalised’ SWCG has a line of metal-insulator 
transitions: for each value of the chemical potential there is a critical temperature. 
Critical exponents such as q = (27rKeR(T,))-’ can then be defined for each point on the 
critical line, one point of which corresponds to the critical point of the X Y  model or a 
He4 film. 

Kosterlitz (1974) predicted, via renormalisation group (RG) methods, that q had the 
universal value of $ everywhere along the line. He  also showed that as the line is 
approached from above, 6 diverges like exp[c(T - Tc)-”2], where c is a non-universal 
number. The first of these results implies 77 = a for the 2D X Y  model and (Kosterlitz 
and Nelson 1977) a universal jump in the superfluid density of He4 films at T,. 
Kosterlitz’s (1974) treatment left three obvious unresolved questions: 

(i) His RG equations were derived only to lowest order in the couplings. It has thus 
far proven impossible to generate higher order RG equations with his methods; his 
equations are therefore not obviously the first step in a systematic scheme. 

(ii) Kosterlitz and Thouless (1 973) argued that higher-than-unit charges, being 
more strongly bound than unit charges at low temperature, remain bound up to 
temperatures T considerably greater than T,, and so play no role in the transition. 
Kosterlitz (1974) thus ignored the higher charges; their irrelevance in the usual RG 
sense (Wilson and Kogut 1975) was not proven however. 

(iii) The irrelevance of interactions such as spin-wave-vortex couplings was not (and 
has not been) established. 

Subsequent (Jos6 et a1 1978, Knops 1978) RG treatments of SWCG have reproduced 
Kosterlitz’s findings, clarified the nature of the SWCG approximation to the 2D X Y  and 
other statistical mechanical models and, without carefully establishing points (ii) and 
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(iii), provided strong evidence for them. A construction of a systematic RG procedure 
(point (i)) was proposed only recently (Wiegmann 1978) within the context of the 
Sine-Gordon (SG) theory, whose exact equivalence to the SWCG model is well-known 
(Coleman 1975, Chui and Lee 1975, Samuel 1978). Though Wiegmann realised the 
irrelevance of ‘higher harmonics’ cos nP+ in the low-temperature XY phase, he still 
uses Kosterlitz’s argument to discard multiply charged vortices. Using the trans- 
formations of Samuel (1978) one can rigorously show that these higher harmonics 
represent the higher vortices, and thus these vortices are not simply initially small, but 
are irrelevant (see below). 

Wiegmann’s (1978) work provides a most convincing confirmation of Kosterlitz’s 
(1974) results, which have been challenged by Luther and Scalapino (1977). These 
authors, considering a slightly different 2D planar model, argue that 5 diverges as a 
power and that 77 is non-universal. It is possible to ascribe this discrepancy to 
non-universality among different 2D planar models, although more systematic analysis 
of the Luther-Scalapino (1977) programme indicates a stubborn drift towards the 
Kosterlitz (1974) results (P Pfeuty 1978 private communication). 

Using a recursion relation (Wilson and Kogut 1974) approach, Wiegmann (1978) 
has shown how higher order terms enter the RG equations of the SG theory. The 
notorious awkwardness of recursion relations beyond lowest order leads him to 
incorrect equations in next-to-leading order. 

However, in this paper we remedy this defect by exhibiting a systematic field- 
theoretic RG treatment for the SG theory. We verify all of Kosterlitz’s (1974) and 
Wiegmann’s (1978) results for the SWCG and in addition: 

(i) calculate the correct next-to-leading order RG equations; 
(ii) prove that a particular linear combination of the coefficients of these next-to- 

leading terms in universal; 
(iii) show that the leading corrections to the scaling form of the spin correlation 

function are universal along the critical line and compute their universal coefficient. 
Our starting point is the Euclidean SG Lagrangian 

LE? = 4(V4l2 - bo/(p;a2)1 cos(Po4) (1.1) 

for the single scalar field 4. The dimensionless coupling constants a. and p i  are, 
respectively (Chui and Lee 1975, Minnhagen et a1 1978), proportional to the fugacity 
Z(=e’Llk13?- ) and inverse temperature T of the SWCG model: 

T = 27rPO2 

z = a0/2p; (1.2) 

a is a short-distance (ultraviolet) cut-off, The critical line (Kosterlitz 1974) starts at the 
point (aO, pt) = ( o , ~ T ) .  

To develop a field-theoretic RG treatment of the phase transition we must therefore 
understand how to renormalise (i.e. remove the infinities as a + 0) the SG theory near 
@; = 87r. This idea seems, a priori, hopelessly irrational: for p i  < 87r Coleman (1975) 
has shown that normal ordering suffices to render the theory finite, but (e.g. Banks et a1 
1976) as p i  approaches 8 7  the scale dimension of the operator cos Po+ approaches 2; 
at p i  = 87r the sum of the (individually finite) terms of the loop expansion at a given 
order in a. develop a logarithmic divergence as a + 0; for p2  3 S T ,  moreover, Coleman 
(1975) has proven the non-existence of the ground state of the normal ordered SG 
theory in the limit a -+ 0. 
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As Banks et a1 (1976), Schroer and Truong (1977) and Wiegmann (1978) suggested, 
these facts point to the necessity for a second (viz wavefunction) renormalisation for 
p i  3 87r. We assert that this additional subtraction permits a sensible definition of the 
SG theory as a double power series expansion in the (renormalised) coupling constants 
a and S =p2/87r-  1, even for 6 > 0. That is, two renormalisation constants suffice to 
remove all divergences order by order in the two expansion parameters. 

We verify this proposition explicity to third order, where non-trivial cancellations 
involving overlapping divergences are already required. We do not have a direct proof 
to all orders within the context of the SG theory, but rather appeal to the well-known 
equivalence (Luther and Emery 1974, Coleman 1975, Luther 1976, Banks et a1 1976, 
Frohlich and Seiler 1976) between the SG theory and the SU(2) Thirring Model. The 
renormalisability of the latter follows from power counting, thereby establishing our 
assertion. 

Another difficulty was suggested by Schroer and Truong (1977). They argued that 
the theory becomes singular at p 2  = 47r, and hence even the high-temperature X Y  
phase should be problematic. We show in § 10 that within our scheme-renor- 
malisation about p2  = 87r-the only place where the 4 7  divergence arises is in the free 
energy (sum of connected vacuum graphs) and that it can be handled systematically by a 
subtraction. 

Thus, we are led to the conclusion that the renormalisation properties of the SG 
equation are analogous to those of the familiar 4 4  field theory in 4 + E dimensions, with 
6 playing the role of E and a the role of the renormalised d4 coupling constant: for 6 < 0 
the theory (Coleman 1975) is super-renormalisable, for S = 0 it is renormalisable, and 
for S > 0 it is non-renormalisable but can be made finite order-by-order in powers of a 
and S. We sharpen the analogy by showing that (like 44 theory for E > 0) the SG theory 
is infrared asymptotically free for 6 > O .  It is this property which makes the critical 
properties of the SWCG model calculable. 

The present paper is planned as follows. In 8 2 the model is defined, and the 
ultraviolet and infrared regularisations discussed. Section 3 explains the necessity of 
departing from a loop expansion in momentum space. Section 4 is a discussion of the 
renormalisation constants required to insure finiteness of the various correlation 
functions of interest and of symmetry properties. Section 5 describes in some detail the 
computation of the vertex functions and renormalisation constants of the SG theory to 
O(a3).  In 8 6 we argue, by appealing to fermion models, that our renormalisation 
procedure works at all orders. The renormalisation constants are used in § 7 to derive 
renormalisation group equations (RGE) and flow equations, and to discuss the uni- 
versality of the lowest order (Kosterlitz) version of the equations and the new universal 
quantity introduced by the higher order terms. Section 8 is devoted to the solutions of 
the flow equations, and 8 9 uses these results to solve the RGE for the correlation 
function of the X Y  model. Section 10 deals with the free energy, and q52 operators. 
Finally § 11 is a discussion of the irrelevance of AS7@4 operators (the higher 
harmonics) and § 12 contains a systematic treatment of the relevance of symmetry 
breaking fields h, (JosC et a1 1978). Seven appendices are devoted to various technical 
details. 

2. Definition of the model 

In performing a perturbation calculation with Lagrangian (1.1) in two dimensions, one 
faces infrared as well as ultraviolet divergences in each order. To deal with the former 
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we introduce a mass term into the Lagrangian, thus breaking the symmetry of 3 under 
the discrete translation 4 + q5 + 2 v n / p o  for integer n. We use the Lagrangian 

3==(V4)2+~m:42- (cyo /a2p: )  cos po4 (2.1) 
where the free propagator at low momentum is Go@) = ( p 2  + mi)- ' .  We will carry out 
our calculations in the presence of mo, and set mo+ 0 at the end. The volume is infinite 
throughout. 

Our infrared treatment differs non-trivially from previous prescriptions, which 
typically preserve the 4 + 4277n/po symmetry. Coleman (1975) introduces both an mo 
and a function, f ( x ) ,  of compact support multiplying the interaction; he then lets mo + 0 
in each order of perturbation theory holding f ( x )  fixed. The equivalence among the SG 
theory, various fermionic models, and the SWCG is usually discussed with mo = 0 in a box 
of finite volume V. Our method has the advantage that the m&52 term is unlike a finite 
volume, a local operator amenable to standard field-theoretic treatment. 

It is, of course, normally assumed that, after perturbation theory is summed, finite 
results are obtained in the limit f ( x )  + 1 or V + CO. We make the same claim for the limit 
mo+ 0 (see also appendices 5 and 6) .  Indeed, we shall see explicitly (§  5)  that while the 
renormalised vertex functions do not possess mo + 0 limits in perturbation theory (see 
e.g. (5.10)) the solutions of our RGE do. Moreover, m:42 will be shown to be a soft 
insertion and hence also a soft symmetry-breaker, which does not affect the renor- 
malisation constants; the limit mo+ 0 will therefore coincide with the V - .  CO or f+ 1 
limits of earlier approaches. Our symme try-breaking infrared procedure is closely 
analogous to treatments of the non-linear (+ model near two dimensions (Brezin and 
Zinn-Justin 1976a,b, Brezin et a1 1976, Amit et a1 1978). 

The ultraviolet regularisation is introduced by defining the free propagator in 
coordinate space: 

whose Fourier transform is 

where KO and KI are the conventional Bessel functions (Gradshteyn and Ryzhik 1965). 
Since repeated use will made of asymptotic properties of G o ( x ) ,  we note that 

In c m : ( x 2 + a 2 )  
1 

G ~ ( x )  - -- 
47T xmo<c 1 (2.4) 

where c = y is Euler's constant. This regularisation is preferable to the usual sharp 
cut-off in momentum space since our calculations involve graphs with many loops and 
are most easily evaluated in coordinate space. 

3. Beyond the loop expansion 

By expanding the cos(p0q5) interaction of the SG theory in powers of 4 and treating all 
resulting terms perturbatively, one generates graphs composed of vertices of all even 
orders and bare propagators ( p 2  + m;)-l. One typically (Coleman 1975, Samuel 1978) 
classifies the graphs for a given Green function in terms of the number of internal 
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momentum integrations (loops) and studies the superficial divergence of graphs by 
power counting. 

Coleman (1978) noted that only graphs containing tadpoles (see e.g. figure 4) are 
ultraviolet-divergent, that each tadpole diverges logarithmically, and that these diver- 
gences can be eliminated by normal-ordering the cosine interaction. Normal-ordering 
removes (i.e. re-sums) the tadpoles, thereby renormalising a0: 

( Y O J  ( 3 . 1 ~ )  

(3.lb) 

The theory is therefore renormalised by defining, for some arbitrary mass K ,  a 

(3.2) 

J = U-*  exp[-il(x = 011 = c(cm$x2)’@71-1m~ 

where I (x)=p;Go(x ,  U ) .  

renormalised (Y via 
2 2 -pa/t371+1 

U 0  = z,ff & = ( K  U ) 

where the (+1) in the last exponent compensates for the explicit u 2  in (1.1). The new 
coupling (Y satisfies the flow equation 

K d * /  = p a E - f f K -  ’lnza1 =(~(/3;/41r-2). (3.3) a~ Po,ao.a ’ K  6o.a 

The flow in the a, Po plane is depicted in figure 1. (The arrows indicate flow as the length 
scale increases.) This vertical flow pattern is at odds with Kosterlitz’s (1974) results for 
the corresponding Coulomb plasma. 

I;j: I :I: 
Figure 1. Flow patterns in the (a, p )  plane with Coleman’s renormalisation. The broken 
line is determined by a Ginzburg criterion. Below it the Coleman treatment holds. The 
arrows indicate the direction of the flow in the large-distance limit. 

The source of the problem is the fact that as -* 81r, y,, the dimension of the 
coupling in front of the cos poq5, vanishes. This implies that the anomalous dimension 
(Wilson 1970, Amit 1978) of cosp0q5 becomes equal to 2. Hence, it is a marginal 
operator-like a q54 operator at four dimensions (Wilson and Kogut 1974, Wegner 
1974). 

This analogy is helpful in understanding the left-hand part of the flow diagram, 
figure 1. The straight lines follow from a theory in which it is assumed that one is a finite 
distance within the region of super-renormalisability-p; C 81r - E ,  E > 0. In such a 
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situation one cannot approach a scale-invariant (massless) theory because of infrared 
divergences (Symanzik 1973,1975, see also discussion in Amit (1978, § 8-4)). To enter 
this region safely one must treat the cos Po+ fully at p i  = 87r, and then penetrate by an 
expansion into the super-renormalisable region as well as into the non-renormalisable 
one. (The fact that p; > 877 is a non-renormalisable region was remarked by Schroer 
and Truong (1977).) 

Of course, when p i  < 87r there is no scale invariance-the correlation length is 
finite. But the mass (the inverse correlation length, not to be confused with the 
externally introduced mo) becomes smaller as p i  + 8 ~ ,  and the region in a, in which the 
straight trajectories are valid, shrinks to zero rapidly. It will be confined below the 
broken line in figure 1. In other words, there is a Ginzburg criterion (Ginzburg 1960, 
Amit 1974) which delimits the validity of the calculation in the super-renormalisable 
regime. 

Another way of making the point about the onset of marginality of cos po4, is to 
consider one of the finite graphs of the loop expansion such as graph (a) in figure 2. This 
graph is proportional to (see (2.2)): 

, + A l a 2 1 n 2 m ~ a 2 + A 2 a 2 1 n m ~ a 2 + .  . . . 1 
d2xKi (mo(x2+ --- 

87rmo 
1 

Figure 2. An example of an infinite set of graphs, all of second order in a which give a 
logarithmic divergence. 

Clearly, as a + 0, the integral tends to the finite limit (87rm;)-’. However, higher terms 
in the loop expansion of the same order in uo-i.e. the remaining diagrams of figure 3 
contribute terms of the form a2  ln2”(moa). Since the dimension of cos(po+) + 2 as 
p i  + 87r we might expect that for 3 8~ the sum of these (individually convergent) 
graphs diverges. 

e +...=: ---- e- 

Figure 3. Graphs contributing to T‘” at second order in cy. The RHS in the graphs defines 
the notation to be used below. 

This expectation is correct. Considtx, for example, the graphs (figure 3) for the 1PI 
two-point vertex r “ ’ ( p )  to second order in a. Their sum (Minnhagen eta1 1978, Samuel 
1978) 

(3.4) rP’= (aoa-2)p02 I d2x{eipx[sinh I(x)--ILK)]-[cosh I ( x ) -  13) 
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diverges as a + 0. To see this, note that since (2.4) implies, for small x, 

sinh I ( x ) ,  cosh I ( x )  - 4 e""' = -+[cmi(n2 + a2)1-@a'4T (3.5) 

the ultraviolet-divergent part of (3.4) is 

rk2) - ~(aoa-2 )2p ;2  d2x(eipx - l ) [cmi(x2+ a')]-@~'l"" 
a+O 

(3.6) 

where A is an infinitesimal radius. 
The a-4 in the prefactor is compensated by the renormalisation of ao, equations 

(3.1) and (3.2). The integral itself is convergent as a + 0 at p = 0 (Minnhagen et a1 
1978), but the coefficient of the p 2  term in (3.6) diverges logarithmically at 6; = 8~ and 
even more strongly for > 8 ~ .  This suggests that wavefunction renormalisation be 
carried out. 

4. Renormalisation Programme 

4.1. Statement of the programme 

In order to establish the flow equations for the temperature and the fugacity of the 
SWCG we study the renormalisation of r '2 ' (p)  for the SG theory. We have seen that, 
calculating order by order in cyo, one encounters logarithmic divergences in I?') at 

= 8 ~ .  We assert that all such infinities can be absorbed by two independent 
renormalisation constants, 2, and 2,. That is, defining renormalised parameters a ,  p 2  
and m, and a renormalised field 4~ via 

( 4 . 1 ~ )  

(4.lb) 

( 4 . 1 ~ )  

42 = 244: (4 . ld)  

we assert that 2, and 2, can be chosen as functions of a to ensure that the renormalised 
two-point vertex 

(4.2) ~ ( 2 )  
R (P, a, 6 ,  m2,  K)=z,r(2)(p, ~ 6 0 ,  mi,  a )  

is finite, order by order in a double expansion in a and 6 =P2/8n -  - 1, in the limit a + 0. 
Here K is a mass scale needed to define the renormalised theory, and note that 
P;q5' = P 2 4 k  and m i d 2  = m2&, namely mo and Poundergo trivial renormalisation. It 
is convenient to obtain 2, and 2, by requiring that the coefficients of p 2  and m2 in I"') 
be finite. Alternatively, one can impose the normalisation conditions 

( 4 . 3 ~ )  2 2 r&p2 = 0, a, 6 ,  m 2  = K', K )  = K + ~ C K  

d 2 2  -r(2)(p = 0, a, 6 ,  m = K , K )  = I 
dp2 

(4.3b) 

where c is defined in equation (2.4). 
Anticipating that m24' is a 'soft' operator, we expect 2, and 2, to be m -  

independent. In § 5 this claim is verified to third order in a and 6. These two variables 
are of the same order of magnitude in the vicinity of the critical lines (see also § 6). 
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General arguments supporting our assertions or renormalisability and m independence 
of the Z are given in Q 6. These arguments indicate that renormalisation counter terms 
with the form of higher harmonics (i.e. cos(np4)) are not generated in the renor- 
malisation process, even though they are allowed by the symmetry of the Lagrangian. 

4.2. Symmetry considerations 

The generating functional of the SG theory with mo = 0 (or partition function of the 
equivalent SWCG model) has the form 

2 = D 4  exp - d 2 x [ $ ( V q 5 ) 2 - ( a o / a 2 p i )  cos P o Q ) + J ( x ) 4 ( x ) ] } .  (4.4) I I  
This expression is formal, of course, and has to be supplemented by infrared and 

ultraviolet regularisation procedures before a meaningful perturbation theory can be 
extracted. Nevertheless, we can use it to investigate the symmetries of the theory. A 
useful check on our calculations follows from the invariance of Z(J = 0) under the 
transformation 4 ( x )  + 4 ( x )  + v/po. This invariance implies that Z(J = 0) and all 
Green functions involving only derivatives of 4 ( x )  are invariant under cyo + -ao in the 
limit mo + 0 (i.e. depend only on a i ) .  But if the renormalisation constants are indeed 
m-independent, they must obey the symmetry. 

This statement is connected (Coleman 1975) with the fact that the SWCG model- 
equivalent to the SG theory-has overall charge neutrality and so has equal numbers of 
positive and negative charges, and thus an even number. 

The evenness of the Green functions implies that the renormalisation constants 
cannot contain odd powers of a. This in turn imposes constraints on the allowed a 
dependence of the flow functions, which are simply logarithmic derivatives of the 
renormalisation constants (see 9 7.1). 

The introduction of mi4' into the Lagrangian destroys the a + -a symmetry. Odd 
powers of a will appear in the various functions. Nevertheless, if m&b2 is indeed a soft 
insertion, then the renormalisation constants will not be modified, and can be chosen to 
contain only even powers of a as before. This property will be checked explicitly in the 
calculation of the next subsection. 

4.3. Renormalisation of the free energy and correlations of 42 
The (dimensionless) free energy is defined as 

F = -In Z(J = 0) (4.5) 

where Z is the generating functional of the SG theory. Apart from the intrinsic interest 
of this function in context of the SG theory, it is the free energy of the SWCG and so 
related to the free energy of the X Y  model. In a 44 theory in four dimensions this 
function is not multiplicatively renormalisable, but needs three subtractions in addition 
to wavefunction, coupling constant, and mass renormalisations. Here we argue that, 
because d = 2 ,  only two subtractions are required to eliminate all divergences from this 
function. This will be verified to O(a2)  in 9 10. 

The free energy has divergences of the form a-*, and these are eliminated by the first 
subtraction. The additional logarithmic divergences are eliminated by the second one. 
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More explicitly, we show that one can construct a renormalised free energy via 

f i R ( a ,  6, m2,  ~ ) = ~ d a o ,  a ( 9  m:, a ) - ~ b ( a o ,  60, K’z~’, a )  

- (mt  - ~ ~ 2 ; ’  ) F I ,  (ao,  ao, K’z;’, a )  (4.6) 
where Fb is the derivative of FB with respect to mi.  

addition to a multiplicative renormalisation by Z;’, namely 
The derivative of F with respect to m’, (4*(x)), needs only one subtraction in 

~ k ( a ,  6 m ’ ~ )  =z,’ ( ~ b ( a o ,  6 0 ,  mi,  a) -~E , (ao ,  s ~ K ’ z ; , ’ ,  a)]. (4.7) 

The function (q5z(x)q5’(y)) needs no subtractions and is renormalised multi- 

That only 2;’ is needed to renormalise 4’ is ( Q  5) a direct consequence of ( 4 . 1 ~ ) .  
plicatively by 2;’. 

5. Computation to third order 

The first step in the computation of rb”’ is the summation of the tadpoles, which 
(Coleman 1975) renormalises aoa-’ to aoJ, with J given by (3.lb).  We represent this 
‘tadpole-renormalised’ graphically, by a full square (figure 4). We shall use the 
graphical notation introduced in figure 3: the sum of even numbers of intermediate 
propagators is denoted by a wiggly line and stands for [cosh I(x) - 11; the sum of odd 
number of intermediate lines is represented by a broken line and stands for [sinh I ( x )  - 
1 ( X ) l .  

All graphs contributing to FL2) up to third order in a. are shown in figure 5. Their 
sum can be written as 

rk2’(p; n-lo, a0, p0, a )  

= p 2 + m i  +aoJ- (aoJ )  d2x{eiPx[sinh I(x)-I(x)]-[coshI(x)- l]} 

4- ( L U J ) ~ ~ ; ~  [ dx dy {eipx[sinh I (x) - I (x) l  eiPY[sinh I(y)-I(y)]  
J 

- 2eipx[sinh I ( x )  -I(x)][cosh I(x) - I] 

-eipx sinh I(x)[cosh I ( y )  - l][cosh I (x  - y )  - 11 

+eiPX[cosh I (x )  - 11 sinh i(y) sinh I (x  - y )  

+[cosh I(x) - I][cos~ I ( y )  - 11 

++[cosh I (x )  - I][cos~ I ( y )  - 11 

+&cosh I(x) - I][cos~ I ( y )  - I][cos~ I(x - y )  - 11 
- 1 sinh i(x) sinh I ( y )  sinh I (x  - y)}. (5.1) 

The (moment-independent) first order term in a. is proportional to J,  which 
contributes factors of In a as p; + 877. To third order in a. and So this term is 

rL;; = a O ( c m ~ ) [ l  +ao 1n(cm;u2) +is2 ~n’(cm~u’)]. ( 5  * 2) 

The other source of divergences as a + 0 is in the integrals. As was shown in § 3, the 
integral in the term quadratic in cyo has a In a divergence proportional to p 2 .  Its p = 0 



Group analysis of the phase transition in 2 0  Coulomb gas 595 

Figure 4. The two- and four-point interactions decorated by their tadpoles. The RHS 
defines our graphical notation for decorated interactions. 

3 

i 
Figure 5. Graphs contributing to r('), up to order a 3 .  The graphical notation is defined in 
figures 3 and 4. 

term is finite. The divergent part of the O(a;)  integral is calculated in appendix 1. The 
resulting O ( a i )  and O(a$30) contributions are 

(5 .3)  

Both the finite, p-independent, part and the finite bit of the p 2  term of the integral 
threaten to give diverging contributions when multiplied by the prefactor (aoJ)2 - 
1 + 2S0 In a. These potential divergences disappear when a. is renormalised to remove 
the divergence in the first-order term, and so do not appear in (5.3) (see appendix 4). 
This type of cancellation is essential if the renormalisation constants are to preserve the 
a. -+ -ao symmetry. 

Finally there is the O(a;)  term. Here one can set ,l3i = 87r everywhere. Only the 
first four terms in the integral (5 .1)  of the third-order term are momentum-dependent. 
We first argue that they contribute no singular term proportional to p 2 .  

One can readily show that their only potentially divergent p2-term is: 

[(aocm~)3/(87r)2]p2 cos2 Ox2 d2x d2y{sinh I ( x ) [ I ( y )  -$] 

+$[sinh I ( x )  cosh I ( y )  cosh I ( x  - y )  -cosh I ( x )  sinh I ( y )  sinh I ( x  - y)]} 

where O is the angle between p and x. 
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Here we have the first appearance of overlapping divergences: the x integration 
evidently produces a short-distance divergence whose coefficient depends on the 
integral over all values of y. The low values of y may lead to a In2 divergence. 

To extract the divergences note that the infinities can only arise from the following 
four regions of integration: 

(1) (1x1, IY I, IX - Y I < A}; (2) { lx l<A;  IYL I x - y l > A l ;  

(3) {IY!<A;IXI,IX-YI>AI; (4) { b - ~ I < A ; b l , ! ~ l > A l .  

In appendix 2 it is shown that the divergent contribution to the p 2  term vanishes as 
A + O .  

The p-independent part of the third-order term in (5.1) has contributions from all 
eight integrals. A bit of algebra reveals that the only singular part is: 

rbf: = [ ( c y o ~ m ~ ) ~ / 8 ~ ~ ~ ]  d’x d2y {exp[I(x) + I ( y )  - I ( x  - y)]  - exp I ( x )  - exp I (y ) } .  

It also has overlapping divergences, and is analysed in regions: 

(5.4) 

(1) { l x I < 8 ; l y I > A l ;  (2) { lx l<A;  lyI<Al;  (3) (1x1, ly I < A l .  (5.4a) 

The details are left to appendix 3. The result is: 

rf: = (&)ct~(cm~)[ln’(cm~U’) + 51n(cm&z~)]. (5 .5)  

Finite terms have again been discarded. 
To sum up, the divergent part of rf’ to third order is 

r f ) = p 2 + m ;  +ao(cmg)[l +so In(cm;a2)+3& ~ n ~ ( c m ~ a ’ ) ]  

-(&)a2p2(1 -s)[I -2so 1n(cm&z2)] 

x [ln(cm$z’) -ao ln2(cm%z2) -2ao 1n(cm&z2)] 

+ (&)cy: (cm 0’ )[ln2(cm (5a + 51n(cm ;U ’11. (5 .6)  

The next step is to expand 2, and 2, in a double series in cy and S .  2, is expanded to 
third order, 2, to second order, since according to ( 4 . 1 ~ )  cyo = a&. These expansions 
are substituted into equations (4. l), which in turn are inserted in (5.6). In addition r f ’ i s  
multiplied by Z,, according to equation (4.2). Terms of Z+r”’ are then rearranged by 
orders in the double expansion; the coefficients in 2, and 2, are determined by the 
requirement that p 2  and m’ have finite coefficients. 

The result is: 

2, = 1+(a2/64)In ~~a’--(ct’8/64)[ ln~ ~ ~ u ’ + 3 l n  K ~ u ~ ] + O ( ( ~ ~ )  (5 .7u)  

2, = 1-8  hl ~ ~ U ~ + ( ( Y ~ / 1 2 8 ) [ h ’  K2UZ-5h K’U’]+(8’/2) In2 K 2 U 2 + O ( a 3 ) .  (5 .7b )  

The details are given in appendix 4. 
To the order calculated here three assertions are confirmed by equations (5 .7) .  
(a) That with two renormalisation constants, chosen specifically to renormalise cyo 

(b) 2 independent of m can be found. 
(c) The ct + -cy symmetry is preserved by the 2. 

and 4, the theory can be made finite. 
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As we discussed in the last section, properties (b) and (c) support our assertion that 
q52 is a soft insertion, and prove it to order a3. A further check was made to test the 
softness of d 2 .  The renormalised vertex I‘$’’’(pl, p 2 ;  k = 0), corresponding to 
( 4 ( ~ ) 4 ( y )  { 4 ’ ( z ) )  is given by: 

Now if m i  is renormalised by ( 4 . 1 ~ )  then 

Namely, r(2,1) requires no multiplicative factor. When the internal parameters are 
renormalised it should be finite. In fact, we have checked that to O(a2) this is true of 
r(281)(p1, p2;  k )  even for k # 0. 

Finally, we write the renormalised l?(2) to O ( a 3 )  

rg’=p2{1 -(a2/64)  ln(cm2/K2) - ( a 2 / 6 4 ) [ l n 2 ( ~ m 2 / ~ 2 ) - 3 1 n ( ~ m 2 / ~ 2 ) ] }  

+ m2{1 + ~ S C  ln(cm2/K2) + ( c Y s ~ / ~ ) c  ln2(cm2/K2) 

+ (a  3c/  128)[ln2(cm2/ K ~ )  + 5ln(cm 2 / ~ 2 ) ] } .  (5.10) 

Note that for p # 0 the limit m + 0 is divergent, This is completely analogous to the 
non-linear u model in 2 + E dimensions, as was remarked in the Introduction. The 
philosophy is that when the series is resumed, by the RGE for example, the limit can be 
safely taken. 

It turns out that the infrared problems of perturbation theory occur in r(2), but not in 
Green functions of composite operators such as the X Y  spins or cos np04 (appendices 
5 and 6 ) .  While I‘(2i is most handy for calculating the renormalisation of a and p, 
appendices 5 and 6 imply that the RC must be m-independent, or that q52 is soft. A 
similar situation arises in the non-linear c model (Elitzur 1979). 

6. General considerations on the renormalisability of the massive SG theory 

Although in the previous section we justified our renormalisation procedure explicitly 
to third order, we have been unable to construct a direct proof of the renormalisability 
of SG theory to all orders. We shall instead construct a (non-rigorous) proof by 
appealing to the equivalence (Luther and Emery 1974) between the SG theory and 
various fermionic models. 

Coleman (1975) showed the equivalence of the massive one-component Thirring 
model (TM) and the SG theory, order by order in perturbation theory. But the point 
p2  = 877 is not a simple point in the massive TM: it corresponds to g = -7r/2, where 
gJJW is the interaction. 

On the other hand, Luther and Emery (1974) and Banks et a1 (1976) showed the 
equivalence between the SU(2)-massless TM and a theory of bosons consisting of a free 
field and a SG field, whose parameters a. and Po are linearly related: ao= 
-8(pz/877 - 1). 
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More explicitly the SU(2) TM is described by a Lagrangian (Banks et a1 1976): 

where a is the internal symmetry index of the spinor $ and 7") are Pauli matrices. 

9 = ia,e(l)afie(lj +$a,e(2)a"e'2)- ( g v " ~ ~ / 2 ~ ~ )  COS[&T(I + g v O / 2 ~ ) - ~ / ~ 0 ( ~ ) ]  (6.3) 

when one chooses the proper corresponding regularisations with A as the ultraviolet 
cut-off. The coupling g: is absorbed into the normalisation of the free field. 

One can see that there is a correspondence, in (6.3), between g ;  and our parameters 
a0 and cyo: 

The corresponding theory of bosons is described by (Banks et a f  1976): 

So== -go(l+gJl= - -gO+o(g;)  

(yo = 8gd1 + go)-' = 8go + O ( g g )  (6.4) 

where go = g:/277. Therefore the double expansion in a. and So is an expansion in go. 
The exact relations (6.4) depend on the regularisation used to obtain the cor- 
respondence between (6.1) and (6.3). Only the first term in the expansion on the RHS of 
(6.4) is independent of it. Luther and Emery (1974), for example, obtain a different 
relation (see below). 

Since the SU(2) 'I'M is renormalisable by power counting (Mueller and Trueman 
1971, Gomez and Lowenstein 1972) the corresponding SG theory must also be 
renormalisable, in the double expansion in cy and S along the line cy = a(g), 6 = S(g),  
where g = g ( g o ,  U K )  is the renormalised coupling of the SU(2) TM, and (Y and S are the 
renormalised parameters of the corresponding SG theory. The line cy = a ( S ) ,  obtained 
by eliminating g between the above relations, must correspond to a trajectory of the 
RGE of the SG theory pasing through the point cy = S = 0:  

N = -88 +O(S2).  (6.5) 

As is shown independently in 8 8, the linear term in (6.5) is universal (independent of 
regularisation). Relation (6.5) gives another special importance to the region in which cy 

and S are of the same order of magnitude. 
So far we have argued in favour of renormalisation on one line in the (cy, 8) plane. 

Let us modify the Lagrangian (6.1) by adding a term breaking the SU(2) symmetry, 
namely -(4)flJF'J"'3'. Following in the footsteps of Banks et a1 (1976) one readily 
shows that this new Lagrangian corresponds to the boson theory 

9 = ~a,e[1)afie"j+ga,e(2)aC"e(2j - (gon2 / r )  cos[JsT(i + g o  +fo)-1/2e(2i~ (6.6) 

where go = g : / 2 ~  and fo =f;)/27~. Hence we have obtained a SG theory with two 
independent parameters. 

At lowest order the parameters cy and S are related to those of the fermion theory, 
defined by equation (6.7), via 

S = - ( g + f )  cy=8g. (6.7) 



Croup analysis of the phase trurisition in 2 0  Coulomb gas 599 

Using this correspondence one can show that the RGE, derived for the fermion theory, 
transform into those of the SG theory (see 8 7). 

The TM with broken SU(2) symmetry is, aside from normalisation conventions and 
relabellings of coupling constants, exactly Luther and Emery’s (1974) ‘backward 
scattering model’. Power counting arguments along the lines of Mueller and Trueman 
(1971) and Gomez and Lowenstein (1972) lead to the conclusion that this theory can 
also be renormalised, order by order in g and f by two renormalisation constants; this 
supports our assertion about the renormalisability of the SG theory. 

In fact, we calculate with the massive rather than the massless SG theory. Frohlich 
and Seiler (1976) have proven the equivalence of the massive Thirring-Schwinger 
model and a massive SG theory. The mass of the SG theory is linear in e, the coupling of 
the gauge field to the fermion. This makes it plausible that an addition of a gauge field 
A,  to the massless TM with broken SU(2) symmetry will make it equivalent to a 
massive SG theory near P 2  = 8x.  Since the operator (C/y,i)A” is soft (it has dimension 1) 
it will not modify the renormalisation features of the theory. This supports our claim 
that m;d2 is soft when added to the massless SG theory. 

7. RGE and universality 

7.1. Flow equations for a and S 

From the renormalisation constants derived in D 5 one can extract the coefficients in the 
RGE obeyed by various Green’s functions. 

The p functions corresponding to the couplings a and S are defined by 

(7.la) 

(7.16) 

where the subscript b means fixed bare parameters. 

only odd and even powers of a,  respectively. 
From the symmetry considerations discussed in 8 4, it follows that Pa and Ps contain 

Using expressions (5.7) for 2, and 2, we find 

( 7 . 2 ~ )  

(7.2b) 

The flow equations, under change p in the scale of length, are given by (BrCzin et a1 
1976, Amit 1978) 

( 7 . 3 ~ )  

[7.3b) 

As a check on the correspondences discussed in the last section one can derive the 

To lowest order one finds 
leading terms of (7.2) from the TM with broken SU(2) symmetry. 

P,k, f) = - 2 g k  +f) Pf (g, f) = 2gf. (7.4) 
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etc. one arrives, directly, at equations (7.2) at lowest order. 

7.2. A new universal quantity 

Let us express pm and p6, derived in the previous subsection, in the form: 

pa = 2Sa +Aa3 ( 7 . 5 ~ )  

(7.56) 

The coefficients A and B separately are not universal numbers. They depend on the 
renormalisation procedure one employs. Nevertheless, we claim that, in addition to the 
coefficients of the lowest order terms, the combination B + 2 A  is a universal number. 
The argument is a generalisation of a method used by Gross (1976).  

Under change in renormalisation there can be a change in the parameters a and S to 
CY‘ and S’ such that 

p -1 2 
8 - 3 2 f f  +Ba2S. 

C Y ’ = C Y + F ~ S + H O T  ( 7 . 6 ~ )  

S ’ = S + G ~ ~ + H O T  (7.66) 

with some finite numbers F and G. That these are the only possible changes follows 
from the relations 

a = ~ ~ 0 2 , ’  +- CY = a O ( l  - A I S  + . . .) 
S = s,z, + (2, - 1) + s = So + Bla + . 

Under a finite renormalisation A I  +Al ,  BI +g1, CY and S change into 

a’=a+(A1-/f&xS 

S‘=S+(&-B,)CY2 

( 7 . 7 ~ )  

(7.76) 

( 7 . 8 ~ )  

(7 .8b)  

which is just (7.6).  In fact, if a finite renormalisation were to break the CY +-a 
symmetry, the argument would be unaffected. 

From (7.8) it follows that the new p functions pk, and pb,, corresponding to CY’ and 6’ 
in the new renormalisation scheme, are: 

da!’ dCY’ ph, =pa-+p?3-=2 aa as a ’ S ’ f ( ( ~ ’ ) ~ ( A + F / 3 2 - 2 C )  

as’ as’ 1 
aa as 32 

pb, = pa- + ps - = - (a’)’ + (a’)’S’(B - F/ 16 + 4 G).  

( 7 . 9 ~ )  

(7.96) 

Therefore the coefficients of the lowest order terms, as well as the combination 

(B  - F/ 16 + 4 G )  + 2 ( A  + F/32 - 2 G) = B + 2 A  

are independent of the renormalisation procedure. The role of this new universal 
number will be discussed in Q Q  8 and 9. 
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7.3. Renormalisation group equations 

A function which is renormalised via 

(7.10) 2 W p 2 ;  a,  6, m2, K )  = ZGb(p2; ao, 6 0 ,  mo)  

satisfies a RGE (Brezin and Zinn-Justin 1976a, b, Amit 1978) 

( K a K + ~ ~ i a , ~ ) - + ~ s ( a , ~ ) ~ + y s ( a , ~ ) m  a a a 2 a  ~ + y ( a , ~ ) ) ~ R ( p ; a , f i , m ~ , K ) = ~  
aa 

(7.11) 

where we defined 

(7.12) 

(7.13) 

If G stands for the usual N-point vertex function of the SG theory then Z = Z:”, 
y = -iNys. For functions G containing composite operators, y is determined by the 
appropriate 2, characterising the operators. 

If the function considered needs subtractions in order to be renormalised, it satisfies 
an inhomogeneous RGE. Such equations will be considered in 0 10. 

8. Solution of the RGE 

8.1. Discussion of the flow equations 

Using expressions (7.3) for the p functions we write the flow equations (7.1) for the 
effective coupling constants a ( p )  and S ( p )  in the form 

p$ = xy + A l y 3  

2 dx 2 

dp 
p - = y  +B1y x. 

( 8 . l a )  

( 8 . l b )  

Here A1 = 1 6 A  = 5 / 4 ,  B1 = 16B = -1, B1 + 2 A 1  is a universal number ( 3 / 2 )  whose role 
in the solution of (8.1) will emerge momentarily, and y = a / 4 ,  x = 2s.  To lowest order 
(8.1) are just the flow equations derived by Kosterlitz (1974) for the SWCG (recall 
equation (1 .2))  and reproduced by JosC et a1 (1978). 

The solution to Kosterlitz’s equations is well known. The flow diagram (figure 6) is 
not modified qualitatively by the third-order terms. It consists of three regions, denoted 
in the figure by I, I1 and 111. The flow along the trajectories takes place as the value of p 
changes from one to zero; the arrows point in the direction of this flow. 

One can trace the behaviour of the couplings in the infrared ( p  + 0) limit. In region 
I, which corresponds to the insulating (low-temperature) phase of the Coulomb gas, the 
theory is IR asymptotically free ( a  3 0). The separatrix between region I and I1 is the 
phase transition (critical) line, any point of which flows into the origin y = x = 0 
(a  = S = 0) as p + 0. Its equation y = y ( x )  is not universal except in lowest order where 
y ( x )  = x. The whole line y = 0, x t 0 (8 t 0) is a line of infrared stable fixed points. 
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I y = ” L K  

x :  2 6  
Fixed  line 

Figure 6. The celebrated Kosterlitz flow scheme for the Coulomb gas. There are three 
qualitatively different regions, separated by two separatrices SI, S2. 

Regions I1 and I11 constitute the metallic (high-temperature) phase of the SWCG. In 
region I1 the effective coupling constants run towards high values and soon reach the 
region where our approximations (small x, y )  are no longer valid. This takes place at 
short as well as long length scales. 

Region 111 (which differes substantially from region I1 in the ultraviolet limit) is also 
characterised by the running away of the effective couplings towards higher values at 
large distances. Here the theory is asymptotically free in the ultraviolet. The tra- 
jectories start perpendicularly from the x axis, as is implied by Coleman’s (1975) 
approach (see e.g. 0 3). 

The XY model has only one parameter K = J/kBT, and therefore corresponds to a 
line, namely (Kosterlitz 1974, Jose et a1 1978), 

y = c exp[-$n(8e2’)x] (8.2) 
in the XY plane; this line is drawn broken in figure 6. 

Following Kosterlitz, we identify the critical point (point C in figure 6) of the XY 
model as the intersection of this line with the critical line y = y(x). This point is, of 
course, not universal. Starting at the critical point of the XY model, one is driven along 
the separatrix to the trivial fixed point a = S = 0. 

We now investigate the influence of the higher corrections to Kosterlitz’s flow 
equations. It is simple to show that the invariant of these equations to third order is 

f(x, y )  = x2-y2-2A1xy2- 3-l(4A1 +2B1)x3. (8.3) 
The RG flow lines are then given by f(x, y )  = C for different values of the constant C. 
The critical line (separatrix) corresponds to C = 0, i.e. 

Y ~ = X ~ + ~ ( A ~ - B ~ ) X ~ / ~ + O ( X ~ ) .  (8.4) 
This equation is not universal. However, solving for x ( p )  one finds 

dx 
dp 

p-= Y ~ ( ~ + B ~ ~ ) = x ~ + ~ ( B ~ + ~ A ~ ) x ~ .  

In this equation the universal number B1 + 2A1 = 16(B + 2A) enters. 
solved to give 

(8.5) 

It can be easily 
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Since x(p) vanishes in the limit of small p one obtains, as p -+ 0, 

l n p + - l / x ( p ) - ~ ( B 1 + 2 A 1 ) l n x ( p ) .  (8.7) 
Taking as a first approximation x(p) = Iln PI - ' ,  we iterate (8.7) to find 

x(p) - l/lln PI -%Bl + 2A1) In /In plllln pi2. (8.8) 

Recall B1 + 2A1 = 3/2. This result is rather similar to results found by Symanzik 
(1973b, equation 3.17) for a 44 theory. 

It is not difficult to construct solutions of the flow equations in other regions by the 
same method. Indeed, Kosterlitz's (lowest order) can be solved analytically in the 
whole plane (see e.g. the solution in region I exhibited in § 9). 

In region I1 one can label an arbitrary flow by yo-its intersection with the line x = 0. 
Use of (8.3) then facilitates the integration of (8.lb),  whereupon: 

l n p  = - . r / y o - l / x + l / x i + ~ ( B 1 + 2 A l ) y ~ [ ( x 2 + y ~ ) ~ ' ~ - ( x ~  + y ; ) - ' ]  

- S(B1+ 2A 1) 111[(x2 + y;)(x? + JJ; )-'I. (8.9) 

8.2. Solution of the RCE using effective coupling constants 

In § 7 we established the RGE (7.7), satisfied by a function G multiplicatively renor- 
malised by a renormalisation constant 2. The solution of this equation is (Amit 1978, 
0 10.13): 

dx 1 
G b ;  a ,  8, m 2 9 4 = p D  exp( -i, Y[Q(X), S!x)Iy)G(p- 'p;  ab ) ,  S ( P L  m 2 ( d ,  K). 

(8.10) 

Here D is the physical dimension of G in units of mass and m'(p) is given by 

with m2(1) = m 2 .  

theory) one finds 
Taking the limit m -+ 0 in the full solution (which is impossible in 

(8.11) 

perturbation 

(8.12) 

8.3. The behaviour of the correlation length 

In region I1 of the phase diagram the correlation length of the SWCG (or SG or X Y  
model) is identified as the inverse value of p for which a ( p )  and S ( p )  become of order 
unity. If one assumes that a given correlation function G is free of singularities for these 
values of a ( p )  and S ( p ]  (i.e. at high temperatures) then according to (8.12) 
G(p;  a, 8, 0 ,  K )  - eD exp 5, y[a(x), S(x)] dx/x. We make the further assumption that 
no singularity is approached in the vicinity of the (high-temperature) separatrix 
between regions I1 and 111. It then follows from (8.9) with x(p) = 1 that: 

Y o  
(8.13) 
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Now 
y ;  = bt + 0 ( t 2 )  (8.14) 

where b is some non-universal constant and t = ( T  - Tc)/ T, is the deviation of the SWCG 

temperature from its critical values. Hence 

6 K exp[~(ct)-"'][1+ ~ ( t ) ]  (8.15) 

where the coefficient of the linear power of t is not universal. It thus follows that the 
higher-order corrections to the flow equation do not affect the behaviour of the 
correlation length in any interesting way. The situation is different with regard to the 
correlation function. 

Using the same logic one can easily convince oneself that in region I of figure 6 6 is 
infinite-the theory is massless. 

8.4. Remnants of asymptotic freedom 

In region I of figure 6-the low-temperature X Y  region-the theory is (see (8.8)) IR 
asymptotically free, as it is along the separatrix. It is well known (Symanzik 1973b) that 
one cannot simply substitute the limiting values (i.e. zero) of the coupling constants in 
equations like (8.12). 

If the coupling constant starts as (In p) - ' ,  and if an anomalous dimension function 
y ( x )  (say, of one variable) behaves like 

then, in the asymptotic region, p + 0, equations like (8.12) will have a term of the form 

(8.16) 

For any s > 1, as p + 0, the exponential factor tends to a constant. For s = 1 the 
prefactor behaves as p-""(ln p) ' l ,  Thus all terms in the y of higher order than 1, in a 
coupling constant which vanishes asymptotically, are unimportant. This fact will be 
used repeatedly in the following sections. 

9. The X Y  correlation function 

9.1. General considerations 

In order to find the behaviour of the couplings CY and p it was advantageous to consider 
the Green functions of SG fields. Clearly, a Green function of any set of more complex 
operators will have to have its CY and p renormalised, so that internal divergences are 
eliminated, but it may develop new divergences. This issue was discussed in general 
terms at the end of § 4. 

In this and the remaining sections we turn to specific examples. First, the function of 
interest in X Y  model is (Wiegmann 1978, JosC et a1 1978) (see also appendix 5 )  

%(R) = (cos 8(R) cos 8(0)),, 
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where R = (Rl, R2) and &(x, y )  = a+/ay .  In other words, the X Y  correlation function 
is a Green function of the composite operators exp[(2n/Po) (% 42(2, x2) dz]. These 
operators have been shown to be bona fide boson fields (Mandelstam 1975, equation 
2.5). 

Since %(I?) is invariant under rotations of R, one can choose R2 = 0 and R1 = IR 1 .  
%(R) can then be written as: 

We will focus on the X Y  correlations in the low-temperature X Y  phase, P 2  > 87r. 
Naively, one would say that since the theory is asymptotically free in this region, all we 
need is the free part of %(R). For a << /RI << mi' + 03 the free part is: 

(9.2) 

Assuming that %(R) is renormalisable multiplicatively we would have (see e.g. § §  7 
and 8) %R(R) = Zxy%(R). In the limit m + 0 the asymptotic large distance behaviour of 
%R will therefore be given by: 

% o ( ~ )  = [a2 (R2  + a2)-1]T"*. 

(9.3) 

where yxu(S, a )  = ~ ( 8  In Z X Y / 8 ~ ) , , .  When R -+ 00, the last factor in (9.4) tends to a 
constant, as a (I?-') + 0, + S(0). As was discussed in § 8, any power of S and a in 
yxy,  higher than 1, will not contribute to the asymptotic behaviour near the critical 
temperature, since both a and 6 + 0 on the separatrix. 

9.2. Questions of renormalisability 

(i) Is %(R) renormalisable at p2  = 8 ~ ?  
(ii) If so, does y1 (of the end of Q 8) get contributions linear in a or 8, beyond those 

The answer to (i) is positive and to (ii) is negative. We show this explicitly to O(a2), 
namely, as ma+ 0, %(R) has no term linear in a. (appendix 6). The term proportional 
to a i  contains, in the limit mo+ 0, three types of divergences; In R2 In a2,  (In a2)' and 
In a', The persistence of the first one implies that % is not renormalisable multi- 
plicatively. However, there is another source for such terms. It is in %o(R). That all the 
proper cancellations take place is shown in appendix 6. The function is renormalisable to 
order a'. 

implied by equation (9.2)? 

To remove the a dependence we have to choose: 

(9.4) 2 2 -118 Zxy = ( K  a ) 

where D is some constant. This leads to 

[1+(S/8) In ~ ' a ~ - ( a ~ / 1 0 2 4 )  ln2(K2a2)+Da2 In ~ ' a ~ ]  

y x y  = ~ ( a ~ n ~ x y / a K ) b = - $ ( l - ~ ) + ~ ( a ~ ,  8'). (9.5) 

9.3. Asymptotic behaviour-leading and next-to-leading terms 

Restricting ourselves first to the critical temperature-S and a on the separatrix- 
we have, from the solution of the flow equations in lowest order (§ 8), S ( z ) -  
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-(2 In t ) - l .  Substituting S(z )  in (9.5) and yxy in (9.3), we find: 

This is just the form discovered by Kosterlitz, with the celebrated 17 = t. We also see 
that the power of In R in %(R) arises as a typical remnant of asymptotic freedom. We 
can extend this result in two different ways: 

(i) Going slightly below the critical temperature-the region to the right of the 
separatrix in the (a, 6) plane in figure 6. In this region the explicit solution of 
Kosterlitz’s equations is 

[S(1) + S(O)] + [ S O )  - S ( O ) I Z ~ S ( ~ )  

[S  ( 1) f S (0) J - [ S  (1) - s (0) J z 4 m  S(2) = S(0) (9.7) 

where S(1) and S(0) are the initial and final values of 6 along a given trajectory. 
Furthermore, S(0) measures the departure of the temperature from the critical 
temperature. 

Inserting (9.7) and (9.5) and in (9.3) one finds: 

IIn R Ill8. (9.8) %(R) R-;[’-a(O): 

In other words, 17 of the X Y  model begins to decrease as T decreases below T,. As 
was mentioned in the Introduction, at very low temperature 77 CC T. These two results 
support the hypothesis that 77 starts from zero at T = 0, increases monotonically until T, 
and becomes $. The relation between S ( 0 )  and T - T, is not universal, of course. Yet i t  
clearly indicates a linear decrease in 17 as one penetrates the low-temperature phase. 

(ii) A more exciting result is perhaps the fact that the next-to-leading terms in %(R) 
at the critical temperature are universal, and can be computed in terms of the higher 
order terms in. the flow equations of Q 7 .  

Returning to the critical temperature, we use the result (8.8), namely, that when 
z + o  

(9.9) 

Recall that both coefficients in (9.9) are universal. Equation (9.9) is the approximate 
solution, for small z ,  of the equation: 

d t  dS -= 
2 2S2(1+$S) 

and hence: 

Substituting (9.9) in the last expression, and the result in (9.3) one finds: 

(9.10) 

(9.11) 
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10. Calculation and renormalisation of the free energy and the function <j q52(x)> 

10.1. Calculation to ~ ( a ’ )  

The bare free energy discussed at the end of 0 4 is given to O(a’) by 

F - ’ d2q2 ln(q’ + m2) - CUOPO’J -~(a0JpO2)’ I d2y[cosh I ( y )  - 11 
b-’Im 

(10.1) 

where J is defined in equation (3.1). The corresponding graphs are shown in figure 7. 

Figure 7. Graphs contributing to the free energy up to order a’, 

The first graph will, by convention, represent the first term in (10.1). From this 
expression it follows that 

F6 = aFb/am: 

= - ( 8 ~ ) - ’  In cm!a2 - ( c I O J / ~ T ~ ; )  

-;(LYOJ/P;)’ d*y[aI(y)ldm;] sinh I ( y ) .  (10.2) 

This function is nothing but (5 q5’(x)) calculated to O(a2). We proceed to renormalise it 
first. 

FL = -(1/8r) ln(cmia2)-(aOc/8r)[1 +Soln(cm:a2)] 

Substituting Pg = 8 ~ ( l  +ao) one finds 

- ( c2a2mi /64~’ )  d2y[cosh I ( y )  - moyKl(moy) sinh I ( y ) -  13 (10.3) I 
where we made use of the fact that I =KO, and that the derivative of KO is -K1. Further, 
we can set mo = m, a. = a and SO = S in terms of second order. 

Using the expression 

myKl(my) = 1 +$m’y2(ln cm2y2 - 1) + o ( ~ ~ ~ ~ )  (10.4) 

the singular part of the a’ term is found to be 

-- [ln(cm ?a ’1 - fln2(cm2 a ’11. (10.5) 
5 1 2 ~  

Note that the apparent divergence of the form a-’ disappeared in the difference 
cosh I ( y )  -sinh I ( y ) .  

In 0 4 we asserted that Fb is made finite via equation (4.7). Use of (10.5) and ( 5 . 7 ~ )  
yields 
F k  = -(1/8.rr)[ln(mZ/~’)+aSC ln(m2/K2) 

+(a2/128)  ln2(m2/K2)- (a2/64) ln(m2/~’)]  (10.6) 
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which is indeed finite. No additional renormalisation was required, in support of our 
contention ( 4 . 1 ~ ) .  

Let us now calculate the renormalised free energy, defined in equation (4.6). In 
order to perform the calculation we use the fact that 

= (ZG1/8rr)[m2 ln(m2/K2) - m2 + K’ ]  (10.7) 

after K~ and mo are substituted in terms o f ‘ K  and m. We also need I(x) beyond the first 
leading term, namely: 

I(x) - -2 ln(cm2(x2+ a2) ] -$m2(x2+ a2)  l n [ ~ m ~ ( ~ ~ + a ~ ) ] + m ~ ( x ~ + a ~ )  +. . . . 
This leads to: 

(10.8) 

$[(~am’)’(8rr)-~] cosh I(x) d2x 

= ( ~ ~ ~ / 2 5 6 r r ) a - ~ +  (a2m2/1024rr )  ln2(cm2u2) 

- (a2m2/256rr )  ln(cm2a2) +finite terms. (10.9) 

Using (10.5), one finds that the l / a 2  divergence is cancelled by the first subtraction and 
the logarithmic divergence by the second. The result is: 

FR = - (1 /8.rr)[m h ( m  ’ / K 2 )  - m + K ’ + CXsCm h ( m  2 /  K 2, - cV8C ( m  - K ’) 

+ (a2m2/128rr )  ln2(m2/K2) - (a2m2/32 )  l n ( m 2 / ~ ’ ) ] .  ( 10.1 0 )  

10.2. Renormalisation group equations 

Since the free energy needs two subtractions (equation (4.6)) in order to be renor- 
malised, it satisfies an inhomogeneous RGE: 

(10.11) 

where F” denotes a double derivative with respect to m 2  
The solution of this equation is given by 

+P2FR[a(P),  a ( P ) ,  m’b), (10.12) 

The function m 2 ( x )  is given in equation (8.11). For m = 0 this reduces to 

FR(% & o ,  K ) = K  

1 
2 

X dx [2-Y+(x) lFR[a(x) ,  K , K1+P2Fda(P), s ( P ) ,  0,  K ] .  

(10.13) 
I, 

On the other hand, we know from perturbation theory that 

Ff f (a ,  8, K ~ ,  K )  = ( 1 / 8 ~ ~ ’ ) [ 1  +O(a2,  aS)].  (10.14) 
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The imhomogeneous term will therefore behave as - ( K 2 p 2 ) / 8 7 r .  Choosing p by 
S ( p )  = 1 one finds (see § 7) that 

p = 5-'. 
Assuming that F R ( ~ ,  1, 0, K )  is non-singular, it follows that the leading singularity of the 
free energy is given by FE(-' ,  in agreement with Kosterlitz (1974). The second 
derivative of F with respect to m2 which is just (s d 2 ( x )  d2(y)) satisfies the RGE 

( ~ a / a ~  +Paa/aa +p,a/as -2y4)F t ' (~ ,  S, 0 ,  K )  = o 
from which it follows that the scale dimension of $I* on the line of fixed points (Y = 0 is 
zero. 

11. Harmonic perturbations 

In the present section we study the question of the effect of adding a perturbation of the 
type cos nPo+ to the Lagrangian. Our considerations so far indicate that such terms will 
not be generated by the renormalisation process, since we have found that two 
renormalisation constants suffice. Such perturbations are, however, present if one 
considers (Kosterlitz 1974) vortices of vorticity higher than unity (Samuel 1978). 

We now show that all these operators, with n > 1, are irrelevant near p 2  = 87r. In 
other words, their scale dimension will turn out to be greater than 2-the dimension of 
cos Pod. 

Consider the function 

C"(W = (exP{iPon[q5(R)-d(O)I})SG. (11.1) 

In region I of figure 6 the dimension of C,, will be determined by the free theory, 
provided the function in renormalisable. 

The free function is given by 

C:(R)  = exp{n2[I(R) -I(O)]}- (a2/R2)n2P8'4". (11.2) 

The proof that C, is renormalisable to O((Y') is virtually identical to that for the X Y  
correlation function of § 9 and appendix 6. Apart from the subtraction of power 
divergences, which originate from the coupling of exp(ipond) to similar operators with 
lower n, shifting the various parameters. This is analogous to the renormalisation of 
high composite operators in the d4 theory (Brezin et al 1976, § III.4.b). 

Defining 2; to be the renormalisation constant for C,, we find (appendix 7) 

yn = - ~ a  In Z n / a K  = 2n2(1 + S) +0(a2) .  (11.3) 

The scale dimension of exp(inpq5) will therefore be 2nZ at the critical point (Y = S = 0. 
This will be the dimension of cos npq5 as well. Clearly, for n > 1, this operator is 
irrelevant. It will not affect the critical behaviour of the X Y  model, since starting on any 
point on the critical line (separatrix) in the a, S plane one is driven to the origin 
a=S=O.  

This establishes our statement that vortices with higher vorticity than 1, which 
should in principle be present when the X Y  model is transformed into a field theory (see 
Introduction), are irrelevant. 
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12. Symmetry breaking fields 

We now consider in contrast to the operators C O S @ $ ,  where 4 is the SG field, 
operators of the form cos p d ( x )  (JosC et a1 1978), where O ( x )  is the X Y  angle variable 
and p is an integer. Such operators are important since crystal fields always break the 
planar rotational symmetry. 

To study these operators we consider again exp[ipe(x)]. In appendix 5 it was shown 
that the X Y  operator exp[id(x)] is translated into the SG operator 
exp[(2r/po) j?& (134/822) ~ z ~ I ~ ~ = ~ ~ ] .  Thus the symmetry breaking operator will trans- 
late via: 

The analysis of § 9 and appendix 6 can now be repeated, with Po replaced by p o / p .  
Hence the correlation function (0, ( X ) O , ( Y ) ) ~ ~  will renormalise multiplicatively, with 
renormalisation constant 2:. The y function associated with it is: 

y, = - K  a In z , / ~ K  = (p2/8)(l - S) + 0 ( a 2 ) .  (12.2) 

It therefore follows that the scale dimension of 0,, at the critical temperature, is 

d, = p2/8. (12.3) 

0, is relevant only if p 2 / 8  < 2 or p < 4 and is marginal for p = 4, as was recognised by 
JosC et a1 (1978). 

Using the logic of § 7.3 the flow equation for h,, the renormalised coupling constant 
associated with the operator 0, in the Lagrangian, follows directly from (12.2) and the 
definition, h i  = Z,h,, of h, in terms of the bare coupling constant (‘symmetry breaking 
field’) h i  

(12.4) P d ln  h,(P)/dP = -2+y, [ab) ,  S(P)l 

with h,( 1) = h,. 
This equation has the solution 

(12.5) 

Note that a flow equation of the type (12.6) was derived in JosC et a1 (1978). 
However, as on previous occasions (Amit and Goldschmidt 1978, Amit eta1 1978), the 
field theoretical technique allows a choice of renormalisation which decouples this 
equation from the rest of the flow equations for a and S. 

Finally, using our results for y, we can obtain directly the critical exponent 6 = 15 
(Kosterlitz 1974). 
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Appendix 1 

We calculate here the divergent part of Ff) which is proportional to a’ and a2S. This 
divergent term has no p2-independent part. When exp(ipx) (see equation (3.b)) is 
expanded in powers of p ,  the odd terms in p vanish when integrated over angles. 

The coefficient of p 2  is divergent. We have to compute 

( ~ 3 ~ / 4 P ? i )  jm d2X(pXI2 expU(x)I 
0 

+finite terms. (Al .1)  

The integral is calculated as follows: 

= -ln(cmia2) + so ln2(cmia2) i - 2 ~ 0  In(cmia2) +constant. 

Substituting (A1.2) in (Al . l )  we reach the result (5.3). 

(A1.2) 

Appendix 2 

In this appendix we prove that there is no divergent contribution of O(a3) to the p 2  term 
in I?. We have to consider the expression 

[ ( ( ~ ~ c m ~ ) ~ ( ( s v ) - ~ ] p ~  cos2 eXx2 d2x d2y{sinh I(x)[I(y) --;I 
+;[sinh I (x )  cosh I ( y )  cosh I (x  - y )  -cosh I (x)  sinh I ( y )  sinh I ( x  - y ) ] } .  

(A2.1) 

As mentioned in 0 5, divergences can only arise from the four regions of integration: 

(1) {IXL IY I, lx - Y I <AI; 

(3) {Iyl<A;Ixl, Ix-yI>A}; 

(2) {Ixl<A; Iyl, Ix-yl>AI; 

(4) {Ix-y/<A; 1x1, lyl>A}. 
Since m2A2<< 1, in the region 1x1 < A one can use the approximation 

1(x)--2 ln[cmi(x2+a2)] (A2.2) 

after having set = 8v. 
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Since the overall divergences must be A-independent we consider only the A- 
independent divergent terms. The calculation over the inner region {/XI, ly I, Ix - y)  <A} 
is rather straightforward, since all propagators can be approximated by (A2.2). The 
result is proportional to A and can be ignored. 

To integrate over the remaining regions, first note that the change of variable 
y f*y - x  makes the divergent contributions of regions (3) and (4) identical. In regions 
(2) and (3) either (x) or (y)  is always <A, so that (A2.2) is applicable for that variable. 
The other variable can be integrated over the range (0, a), rather than the prescribed 
(A, 00). The difference is of O(A). 

In the region 1x1 < A :  

I (x  + y )  = I ( y )  + h1’(y) +$h21”(y) + . . . (A2.3) 

where I ’ ( y )  = (d/dy2)1(y) and h = 2xy +x2.  A similar expansion, in powers of k = 
2x - y + y2, will hold in powers of k when Iy I < A .  

Using this expansion one can expand the hyperbolic ‘propagators’ as 

sinh I (x  +y)  =coshI(y)[hI‘(y)+$h21“(y)]+sinh I ( y ) [ l  +ih2(I’(y))2]+0(h3)  

coshI(x+y)=coshI(y)[l+~h2I’(y)]2+sinhI(y)[h1’(y)+~hI”(y)]+O(h3). (A2.4) 

Similar expressions hold for the expansion in powers of k .  

respectively, apart from the coefficient [ (a0cm~)~(8.rr)-~] lp~.  
We denote the divergent contributions from regions (2) and (3) by J2 and J3, 

2{l(y)-$+$[cosh21(y)-sinh2 I(y)]+O(x2)}. 

(A2.5) 

1 
Jz = d2x cos2 &x2 d2y 

2 (cm2)2(~2  + a ) I 
The O(x2) terms are non-singular and can be omitted. Therefore, substituting (2.2) for 
I, we are left with 

where we have set a = 0 in KO, and used Gradshteyn and Ryzhik (1965, equation 
6.5 6 1.16). 

In region (3) only the expression in the last square brackets in equation (A2.1) gives 
a divergent contribution. Using the expansion in k, discussed above, it is easy to bring 
the divergent contribution into the form: 

2 2[y21’(x) +2x2y2 cos2 6,I”(X)]. (A2.7) 
1 

d2X COS’ BXx2 d2y 
( y 2 + a  ) 

Using the relations 

(A2.8) 

(A2.9) 

2 d  I ’ ( x )  =- -Ko(mx) 
x dx 

1 d2 I d  I ” ( X ) = ~  F K o ( m x ) - T  -Ko(mx> 
x dx x dx 



Group analysis of the phase transition in 2 0  Coulomb gas 613 

and the differential equation satisfied by KO, the integrals in (A2.7) are evaluated 
(Gradshteyn and Ryzhik 1965) to give 

(A2.10) 

The overall divergent contribution, J2 + 2J3, is therefore zero. 

Appendix 3 

The divergent contribution of O(a3)  to the p-independent part of r(’) is calculated by 
evaluating the expression 

1 
( ~ ; ( c m g ) ~  I d2x d2y {exp[I(x)+I(y)-I(x +y)]-expI(x)-exp I(y)}. (A3.1) 5127’ 

The two regions{Ixl< A, ( y I >  A} and{/y( <A, 1x1 >A} (regions 1 and 2 in ( 5 . 4 ~ ) )  give 
equal divergent contributions. In the first region we use the expansion (A2.3) for 
I ( x  + y) .  The part of the integrand in (A3.1) which contributes to the divergence is 

exp I(x){exp[-hI’(y) -$h21”(y)]- 1). (A3.2) 

Expanding the y -dependent exponentials up to O(x2), (A3.2) becomes: 

exp[I(x)][-hI’(y) +$h2[I ’ ( y ) ]2 -$h21’ ‘ ( y ) ] .  (A3.3) 

Using relations (A2.2), (A2.8) and (A2.9), the differential equation satisfied by KO, as 
well as the relation dKo/dx = -K1, integrating over the angles, the contribution of this 
region to (A3.1) becomes 

Using Gradshteyn and Ryzhik (1965, equations 5.52.1 and 5.54.2), one finds 

where the fact that A >> a permits us to take a = 0 in the K. Finally, the divergent 
contribution of this region is 

a;cmE 
128 

J1=- In( a 2/ A2)[ln(cm A2) + $1. 

On adding the identical contribution of region (2), we obtain 
L L  

J1+J2=- ln(a2/A2)[ln(cm~ A’) + %] 
64 

In region (3) (1x1, IyI<A}, (A3.1) can be approximated by 
2 ( x  - y)2  + a 2  

d2x d2y 
aYcmg 

J3 z- 5 1 2 7 ~ ~ 1  [((x’+a2)(y2+a2)) - ( X ~ + U ~ ) ~  

3 2  3 2  
=- ln2(a2/A2) +crocmo ln(a2/A2) + finite terms. 

128 64 

(A3.4) 

(A3.5) 

(A3.6) 
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Adding (A3.5) and (A3.6) one obtains for the divergent contribution 

(A3.7) 

Note the important result that the In a’ In A2 term has disappeared! Since the final 
result cannot depend on A, the total divergent contribution to (A3.1) must be of the 
form 

J = (cy~cm;/128)[1n~(cm;a~)+~ 1n(cm;a2)]. (A3.8) 

This is equation (5.5). 

Appendix 4 

The bare two-point function is given by 

r g ) = p 2 + m ;  +aocm;[l +so 1n(cm20a2)++$, 1n’(cm20a2)] 

+clcy&”l +2a0 ln(cmEa’)] 

-(1/64)cy;p2(1 -So)[l +2S0 ln(cm~a’)][ln(cm~a’)-S~ ln2(cm;a2) 

- 2 ~ 0  ln(cm;a’) + c2 + c ~ s O I  

+ (1/128)*3cm20[ln2(cm20a2) + 5  1n(cm;a2)+c4] (A4.1) 

Using the definitions (4.1) and (4.2), of Z, and Z,, we obtain the following 
where cl are some finite constants. 

expression for the renormalised two-point function: 

rk2’=Z,p2+m2+crcm2Z,[1 + S  ln(cm2a’)+(Z,’ - 1) ln(cm2a2)+3a2 ln2(cm2a2) 

+ c1cy2cm2Z2, [ 1 + 26 ln(cm2a2)] 

- ( 1 /64)a ’ p  ’2 2 (1 - S)[ 1 + 2s  In( cm ’ a  ’)][ln(cm ’ a  ’) 

- s ln2(cm2a2) - 2s ln(cm2a2) +c2 + C ~ S ]  

+ (1/128)cy3cm2[ln2(cm2a2) + 5 ln(cm2a2) + c4] + O b 4 ) .  (A4.2) 

The expansions of the renormalisation constants in terms of the renormalised cy 

Z+ = 1 +B1ct2+B2a2S +B3a3 (A4.3) 

Z,  = 1 +AIS + A 2 ~ 2 + A 3 S 3  (A4.4) 

are substituted in (A4.2). It is then rearranged in such a way that the coefficients of p 2  
and m’ are ordered in the double expansion in cy and S. 

@ = p ’ +  m2+cycm2+cyScm2[ln(cma2)+A~]+cla2cm2-(1/64)cy2p2[1n(cm2a2) 

and 6, 

We find 

- 64Bl] + cl(cm2)cy2S[ln(cm2a2) +AI] + B3a3p2 

- ( 1/64)a2Sp2[2A ln(cm2a2) - 3 ln(cm’a ’) + In2(cm2a2) 

+ 2c2[A1 +ln(cm2a2)]- c 2 +  c3 - 64B2}+~cyS2cm2[ln2(cm2u2) 
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+2A1 ln(cm2a2)+2A3]+(1/128)(r3m2c[128A2- 128B1 ln(cm2a2) 

+ln2(cm2a2)+5 ln(cm2a2)+c4]. (A4.5) 

This function is made finite by choosing 

B1 = (1/64) ln(K2a2) 

B2 = (1/64) ln2(K2a2) 

2 2  AI = -ln(K a ) 

A 2 =  (1/128) l n ' ( ~ ~ a ~ ) - ( 5 / 1 2 8 )  ln(K2a2) 

-(3/64) ln(K2a2) 

B3 = 0. A -1 - ln2(K2a2) 

These are just the results discussed in 0 5. 
Note the following features which appear in the process. As was mentioned in § 5 ,  

the determination of 2, or of A1 eliminates three divergences. Moreover, the 
cancellation of subdivergences by insertions in lower order terms, manifests itself in 
three instances: (a) the determination of Al eliminates the ln2 divergences in the term 
proportional to a S p , and (b) in aS2m2, (c) the determination of B1 cures the ln2 in the 
last term in (A4.5). 

2 2 2  

Appendix 5 

Equation (9.1) expressed the X Y  correlation function in terms of averages over 
composite operators of the SG theory. Since R is taken fixed and mo + 0, all functions 
which will appear in the expansion of %(R) can be approximated by their leading 
behaviour for moR small. 

We shall verify ( 9 . 1 ~ )  in perturbation theory, using a two-dimensional volume of 
linear size L and making mo+ 0. In fact, as is shown in appendix 6, this interchange of 
limits can be aflected in 9(R), even in perturbation theory (see e.g. Elitzur 1979). 

The expression for %(R)  in perturbation theory is: 

where 2 is the partition function of the SG theory. In (A5.1) we have already taken into 
account the well-known fact that only even powers of a survive as mo + 0 (Coleman 
1975). In fact, from the powers of cos 4, entering the expansion, only products of 
exponentials with equal numbers of i 4  and (-$), contribute Counting these 'neutral' 
combinations transforms the (2n !)-' into (n !)-2. 

The Si express the 'neutrality'. They are simply defined as Si = l ( i  = 1, . . . , n) ;  
Si = -l( i  = n + 1,.  . . ,2n) .  

The first and second exponentials, inside the functional integral in (A5. l), are 
exponentials of linear operators acting on 4. Hence their product can  be written as 
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exp 1' d2z Js(z)4(z),  with 
2 n  

i = l  
Js ( z )  = -(2.rr/p0)S'(z2)8[z1, (0, R)]+ipo  SiS(z -x(')). (A5.2) 

Here we have used the following notation: 8' is a derivative of a one-dimensional 8 
function. The function 8 is defined as: 

The Gaussian integrals over the 4 in (A5.1) can be performed. The result is: 

(A5.3) 

(A5.4) 

Zo is the partition function of the free SG theory. 

I [aGo(z)/aa2] d t l  - - ( 1 / 2 ~ )  

In the limit mo + 0, Go is approximated by (2.8), and 

(A5.5) 2 2  
1,2 tan-'[zl/(z; + u ~ ) ~ ' ~ ]  

( t z + a  1 
[d2G~(z -z ' ) / d t2az~]dz l  dz; - ( 1 / 4 ~ )  ln (z2+a2) .  (A5.6) 

The exponential in (A5.4) becomes: 
2 n  

exp[ -(.rr/pi) l n [ ( ~ ~ + a ~ ) / a ~ ] - i  Si[tan-'(R - x ~ ) ) / x ~ )  +tan -1 x1 ( i )  / x i ) ]  
i = l  

x C . .  sisj ln[(x"' - x " ) ) ~  + U']  
1.1 

where B(R) is (Chui and Lee 1975) 

(A5.7) 

(A5.8) 

(A5.9) 

To calculate Zo/Z one simply sets R = 0 on the RHS of (A5.8) and I on the LHS. The 
result is: 

Z/Zo= C (ao/2pi)2n(n!)-2 ll-;;,exp(  ST) 1 SiSj ln[(x"'-x(")2+a2]]. 
m dZX ( i )  

n=O i j  

(A5.10) 
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From (A5.8) and (A5.10) one can read off that: 

%(R)  = [(R2+a2)/a2]-rr’Pa(exp i[e(R)- e(0)])CG (A5.11) 

where the subscript CG indicates a Coulomb gas grand ensemble of systems with equal 
numbers of positive and negative charges of equal magnitude, interacting via a softened 
logarithmic interaction, at a temperature and fugacity given by (1.2). 

The first factor in (A5.11) is the spin-wave contribution. The second part represents 
the vortices. Thus (Kosterlitz 1974, JosC et a1 1978), (A5.1) is indeed the X Y  
correlation function in the SWCG approximation. 

From (A5.8) and (A5.10) it follows that the limit L + 03 can be taken in every order 
in cyo. In other words, the integrals and the subintegrals converge at large x(;). This is in 
contrast to the behaviour of the SG Green function, I“’), which had to be resumed 
before the limit m + 0 can be taken. Perturbation theory for r”), at any fixed order, has 
infrared divergences. An inspection of a few higher orders in the above procedure 
suggests that the limit m + 0 can be taken in every order in the perturbation theory for 
%(I?). The situation is quite reminiscent of the U model (see e.g. Brezin et a1 1976, 
Elitzur 1979). 

Using similar techniques it is possible to show that the limits mo + 0 and L + 03 can 
be interchanged in every order of the perturbation expansion for %(I?). 

Appendix 6 

In this appendix we study %(R) of equation (9.1) to verify its renormalisability to O(a2)  
and to derive ‘ y x y  of 8 9 to O(a, 6). We emphasise that since (appendix 5 )  %(R) is 
infrared finite in each order of perturbation theory even with L = 03 and mo = 0, there is 
no need to introduce any IR cut-off. 

Equations (A5.9) and (A5.11) imply that to O(cyE): 
m 

2 2 2  %(RI = %o(R)[ 1 + (cy0/2poa ) d2x“’ d2x(2)[f(x(1), xi’), R - 13 

(A6.1) 
J 

To O(cy2) we can set = p2  = 87r, and cyo  = cy in the second-order term in (A6.1). When 
p?j = 87r the integral converges in the IR, namely, for large values of x(’) and x”), both 
the double integral, as well as its subintegrals, converge. The subintegrals converge due 
to the last factor in the integrand, which behaves like The double integral is 
helped by the fact that as Ixlj, lx2] + 03, ( f -  1) + 0. This is probably a general feature, as 
was discussed at the end of appendix 5 .  

To verify the renormalisability of %(R) to O((u2) we must check that %(R)1’2 has no 
R-dependent divergences. Such divergences come from two sources: (a) from %o(R), 
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which is due to the renormalisation of ,Bo, and to O(a2)  is given by (via (4 . lb)  and ( 5 . 7 ~ ) )  

g0(R) = [ (R2 + ~ ~ ) / a ~ ] - " " ' ~ ~ [ l  -(a2/128) ln(Ka) ln(R/a)] (A6.3) 

In order to analyse the integral we make the change of variable x'l)+ w = x ( ~ ) - - x ( ~ ) .  
and (b) from the integral in (A6.1). 

It is then clear that divergent terms arise only from the three regions: 

(1) {/wI<A, /x(')I, / R - x ' ~ ' ~ > A } ;  

(3) {IwJ<A; IR-x '~ '~<A}.  

(2) (1 w I < A; / X ( ~ ) /  < A}; 

(It is assumed that IRI >>A.) 
Regions (2) and (3) are readily seen to contribute no R-dependent divergences (i.e. 

no In R In a terms). In region (l), f(w, x('), R) can be expanded in powers of I w ~ / / x ~ ( ~ )  
and iw//lR - X ( ~ ) I  so that the second term in the square of (A6.1) becomes 

1 1 
- ( c ~ R ' / 3 2 ~ ) ~  d2x I,,, ( x ~ + u ~ ) [ ( R - x ) ~ + u ~ ]  

- (a2/128) ln(R/A) ln(a/A). (A6.4) 

The divergent contributions of regions (2) and (3) are identical since they are related 
by the variable change x ( ~ ) c ~ R  --x('). Both ln2 and In a terms occur. The former are 
easy to extract, since the integration region is infinitesimal. The latter (as we shall see) 
are irrelevant for our purposes. Regions (2) and (3) then contribute a total divergence 
of a2[-ln2(a/A)/256 + D In(a/A)] for some constant D. The overall divergent part of 
%(R) can then be written: 

%(R)-(R/U)--2"'p2[1+ (a2/256) 1n2(KU).tDCY2 In U]. (A6.5) 

Note that all R-dependent divergences have cancelled. Furthermore, no IR problem is 
present. %(R) is clearly renormalisable by the multiplicative factor: 

zxy = (KU)-"'"{1- [(a2/256) ln2(Ku) + Da2 In KU]} (A6.6) 

Since p 2 / 8 x  = 1 +is one finds: 

y x y  

as claimed in § 9. 

~ ( 8  In z,,/~K) = --$(I - is) + o ( ~ ~ , s ~ )  (A6.7) 

Appendix 7 

We consider the function 

G (RI = (exp(inPd4 (R) - 4 ( O ) ~ } ) S G .  (A7.1) 

Using the techniques described in appendices 5 and 6 one finds first that 

C:(R)=exp( -2n 1 2 2  d2x d Z r [ s ( ~ - R ) - S ( ~ ) I G ~ ( x - ~ ) [ G ( r - R ) - S ( ~ ) l } .  (A7.2) 

Equation (A7.2) leads directly to (11.2), 
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Next we proceed to compute the overlapping divergence in the second-order term; 
the first-order term vanishes in the limit mo + 0. We write 

C,(R)= Ct +&gpg4a-4C?(R)+. . . 
with 

(A7.3) 

(A7.4) 

The Gaussian integrals in (A7.4) are evaluated as in appendix 5 to yield (in the L -$a, 
mo+ 0 limit) 

~11’) (R) = (c; ( ~ ) / 2 ) a ’ Q ~ ~  
m 

d2x‘” d2x‘*’[g(x‘”, x ( ~ ) ,  R) - 11 

[(x(l) - .(2))2 + a2]-P8/4“. (A7.5) 

where 

(A7.6) 

Treatment of the integral in (A7.5) parallels that of (A6.1), the only difference being 
that there is an additional source of divergence, namely x(’) < A and /R - x ( ~ ) I <  A. These 
are power divergences, which are eliminated by the coupling to operators with lower n 
(Brezin et a1 1976; § III.4.b). This region can therefore be ignored. The integral is IR 
convergent, the change of variable x(’)+ w = x ( ~ ) - - x ( ~ )  can be affected and the 
replacements p i  = p2 = 8.rr and a. = a are appropriate, and the only uv singularities to 
be considered occur for (w 1 < A  with A infinitesimal. Analysis by regions, just as in 
appendix 6 ,  shows that the In R In a terms from the integral cancel against similar terms 
coming from C;. Hence C, (R) is multiplicatively renormalisable; the 
renormalisation constant is Z, - ( ~ ~ a ~ ) - ~ ~ ~ ~ / ~ ~  (1 + O(a ’)) whereupon equation (1 1.3) 
then follows. 
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